Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

catena-Poly[[[1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetra-decane]copper(II)]- μ-cyano-[tricyano-nitrosoiron(III)]- μ-cyano]

Liang Shen, ${ }^{\text {a* }}$ Hua-Tong Wang, ${ }^{\text {a }}$ Yi-Jian Zhang ${ }^{\text {a }}$ and Zhi-Min Jin ${ }^{\text {b }}$
${ }^{\text {a Department of Chemistry, Hangzhou Teachers' College, Hangzhou, People's }}$ Republic of China, and ${ }^{\text {b }}$ College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
Correspondence e-mail: shenchem@sina.com

Received 30 January 2004
Accepted 1 March 2004
Online 31 March 2004
The bimetallic title complex, $\left[\mathrm{CuFe}(\mathrm{CN})_{5}\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2}\right)(\mathrm{NO})\right]$ or $\left[\mathrm{Cu}(L) \mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]$ [where L is 1,8 -bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane], has a one-dimensional zigzag polymeric $-\mathrm{Cu}(L)-\mathrm{NC}-\mathrm{Fe}(\mathrm{NO})(\mathrm{CN})_{3}-\mathrm{CN}-\mathrm{Cu}(L)-$ chain, in which the $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{II}}$ centres are linked by two CN groups. In the complex, the $\mathrm{Cu}^{\text {II }}$ ion is coordinated by four N atoms from the L ligand $[\mathrm{Cu}-\mathrm{N}(L)=1.999(2)-$ $2.016(2) \AA$] and two cyanide N atoms $[\mathrm{Cu}-\mathrm{N}=2.383$ (2) and 2.902 (3) \AA], and has an elongated octahedral geometry. The $\mathrm{Fe}^{\mathrm{II}}$ centre is in a distorted octahedral environment, with $\mathrm{Fe}-\mathrm{N}($ nitroso $)=1.656(2) \AA$ and $\mathrm{Fe}-\mathrm{C}(\mathrm{CN})=1.938$ (3) 1.948 (3) A. The one-dimensional zigzag chains are linked to form a three-dimensional network via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

The coordination chemistry of cyanide-bridged metal complexes, especially ferro- and ferricyanides, has become of great interest in recent years due to their unusual electronic states, magnetic behaviour and photochemical properties (Alcock et al., 1993; Entley \& Giroloni, 1994; Clemente-Leon et al., 2001). Several studies have been carried out with the $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}$ anion (Olabe et al., 1984; Zhan et al., 1999), but the interesting cyanide-bridged polymeric complexes based on azamacrocyclic nickel(II) or copper(II) and nitroprusside have only been developed very recently (Kou et al., 2000; Lu et al., 2000). We report here the preparation and structure of a new cyano-bridged $\mathrm{Cu}-\mathrm{Fe}$ complex, (I).

The asymmetric unit of (I) consists of one $[\mathrm{Cu}(L)]^{2+}$ cation [L is 1,8 -bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane] linked to an $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}$ anion. As shown in Fig. 1, two cyano N atoms in a cis arrangement coordinate to the adjacent Cu atoms, forming a one-dimensional zigzag chain
which extends in the b direction. The coordination environment of the Cu atom can be described as elongated octahedral. The basal plane is constructed by the coordination of four secondary N atoms of the tetradentate azamacrocyclic ligand (L), with two N atoms of cyanide groups occupying the axial positions. The $\mathrm{Cu}-\mathrm{N}$ (azamacrocycle) bond distances range from 1.999 (2) to 2.016 (2) \AA, close to the values of 2.002 and $2.018 \AA$ in $\left[\mathrm{Cu} L\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}\left[(\mathrm{Cu} L) \mathrm{Fe}(\mathrm{CN})_{6}\right]_{2 n}$ (Lu et al., 2000). The axial $\mathrm{Cu}-\mathrm{N} 7$ and $\mathrm{Cu}-\mathrm{N} 9^{i}$ bonds [Table 1 ; symmetry code: (i) $\left.\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z\right]$ are elongated significantly, owing to the Jahn-Teller effect of the d^{9} electronic configuration of $\mathrm{Cu}^{\text {II }}$. This was also present in $\left[\mathrm{Cu} L\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n^{-}}$ $\left[(\mathrm{CuL}) \mathrm{Fe}(\mathrm{CN})_{6}\right]_{2 n}\left(\mathrm{Lu}\right.$ et al., 2000) and $\left[\mathrm{Cu}(\mathrm{en})_{2}\left\{\mathrm{Fe}(\mathrm{CN})_{5^{-}}\right.\right.$ (NO) $\}_{2}\left[\mathrm{Cu}(\mathrm{en})_{2}\right]$ (en is ethylenediamine; Zhan et al., 1999).

(I)

The average bite distances of the five- and six-membered chelate rings are 2.736 (3) and 2.939 (3) Å, repectively, and the average bite angles of the five- and six-membered chelate rings are $85.80(9)$ and $92.47(9)^{\circ}$, respectively. These values are similar to those in $\left[\mathrm{Cu}(L)(\mathrm{SCN})_{2}\right]$ (Shen, 2002). The sixmembered chelate rings adopt a chair conformation and the

Figure 1
A view of the asymmetric unit of (I) and some immediately adjacent atoms which generate the polymeric chain. The minor-occupancy disordered hydroxy groups are not shown. Displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $\left.\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z\right]$.

Figure 2
A packing diagram for (I), viewed along the a axis.
alkyl chains on the bridgehead N atoms are axial. The fivemembered chelate rings assume a gauche conformation. The average $\mathrm{N}-\mathrm{C}$ bond distance on the azamacrocycle is 1.46 (3) Å.

The $\mathrm{Fe}^{\mathrm{II}}$ atom in (I) is in a slightly deformed octahedral arrangement. The equatorial plane is defined by four cyanide C atoms, and the two axial sites are occupied by a cyanide C atom and the nitrosyl N atom. The $\mathrm{Fe}-\mathrm{C}, \mathrm{Fe}-\mathrm{N}, \mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{O}$ bond lengths in the $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]$ moiety are comparable with those found in previously reported multinuclear $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}$ complexes (Zhan et al., 1999; Shen et al., 2002). The $\mathrm{Fe}-\mathrm{N}$ distance $[1.656$ (2) \AA] is much shorter than the five $\mathrm{Fe}-\mathrm{C}$ distances, which are in the range 1.938 (3)1.948 (2) \AA. Hence, the NO ligand is perfectly localized in the structure.

According to molecular orbital theory, $M-\mathrm{NO}^{+}$should be nearly linear: the observed $\mathrm{Fe}-\mathrm{N}-\mathrm{O}$ bond angle in (I) is 175.9 (2) ${ }^{\circ}$. The $\mathrm{Fe}-\mathrm{C}-\mathrm{N}$ bond angles [in the range 176.3 (2)$\left.178.5(3)^{\circ}\right]$ are also essentially linear. The $\mathrm{Cu}-\mathrm{N} 7-\mathrm{C} 13$ and $\mathrm{Cu}-\mathrm{N} 9^{\mathrm{i}}-\mathrm{C} 14^{\mathrm{i}}$ bond angles are 147.2 (2) and $133.9(2)^{\circ}$, respectively, resulting in a one-dimensional zigzag chain being formed.

Hydrogen-bonding interactions (Table 2) play an important role in the solid-state structure of (I). As shown in Fig. 2, the one-dimensional zigzag chains are linked to form a threedimensional network via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In addition, there are some weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2).

Experimental

The starting material, $\mathrm{Cu}(L)\left(\mathrm{ClO}_{4}\right)_{2}$, was prepared according to the literature method of Shen (2002). To an aqueous solution (15 ml) of $\mathrm{Cu}(L)\left(\mathrm{ClO}_{4}\right)_{2}(0.48 \mathrm{~g}, 1 \mathrm{mmol})$, an aqueous solution (15 ml) of $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.29 \mathrm{~g}, 1 \mathrm{mmol})$ was added dropwise. After stirring for 30 min at room temperature, the resulting precipitate was collected by suction filtration. Dark-purple single crystals of (I) were obtained by recrystallization from water in the dark.

Crystal data

$\left[\mathrm{CuFe}(\mathrm{CN})_{5}\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2}\right)(\mathrm{NO})\right]$
$M_{r}=569.92$
Monoclinic, $P 2_{\mathrm{o}_{1}} / n$
$a=12.885$ (2) \AA
$b=14.089$ (2) \AA
$c=13.519$ (3) \AA
$\beta=93.35$ (1) ${ }^{\circ}$
$V=2450.0(7) \AA^{3}$
$Z=4$
$D_{x}=1.545 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 28 reflections
$\theta=2.7-15.1^{\circ}$
$\mu=1.51 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, purple
$0.40 \times 0.36 \times 0.36 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction: empirical (North et al., 1968)
$T_{\text {min }}=0.549, T_{\text {max }}=0.582$
4892 measured reflections 4324 independent reflections 3303 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 15$
$k=0 \rightarrow 16$
$l=-16 \rightarrow 16$
3 standard reflections every 97 reflections intensity decay: 5.2%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.076$
$S=0.97$
4324 reflections
332 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0405 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.31$ e \AA^{-3}
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0010 (3)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{N} 4$	$1.999(2)$	$\mathrm{Fe}-\mathrm{C} 17$	$1.946(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.009(2)$	$\mathrm{Fe}-\mathrm{C} 16$	$1.947(3)$
$\mathrm{Cu}-\mathrm{N} 2$	$2.013(2)$	$\mathrm{Fe}-\mathrm{C} 14$	$1.948(3)$
$\mathrm{Cu}-\mathrm{N} 5$	$2.016(2)$	$\mathrm{O} 3-\mathrm{N} 8$	$1.131(3)$
$\mathrm{Cu}-\mathrm{N} 7$	$2.383(2)$	$\mathrm{N} 7-\mathrm{C} 13$	$1.152(3)$
$\mathrm{Cu}-\mathrm{N} 9^{\mathrm{i}}$	$2.902(3)$	$\mathrm{N} 9-\mathrm{C} 14$	$1.145(3)$
$\mathrm{Fe}-\mathrm{N} 8$	$1.656(2)$	$\mathrm{N} 10-\mathrm{C} 15$	$1.138(4)$
$\mathrm{Fe}-\mathrm{C} 15$	$1.938(3)$	$\mathrm{N} 11-\mathrm{C} 16$	$1.134(4)$
$\mathrm{Fe}-\mathrm{C} 13$	$1.942(3)$	$\mathrm{N} 12-\mathrm{C} 17$	$1.144(4)$
$\mathrm{N} 4-\mathrm{Cu}-\mathrm{N} 17$	$175.33(9)$	$\mathrm{C} 14-\mathrm{N} 9-\mathrm{Cu}$	
$\mathrm{N} 4-\mathrm{Cu}-\mathrm{N} 2$	$92.65(9)$	$\mathrm{C} 13-\mathrm{N} 7-\mathrm{Cu}$	$133.9(2)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$85.91(9)$	$\mathrm{O} 3-\mathrm{N} 8-\mathrm{Fe}$	$147.2(2)$
$\mathrm{N} 4-\mathrm{Cu}-\mathrm{N} 5$	$85.69(9)$	$\mathrm{N} 7-\mathrm{C} 13-\mathrm{Fe}$	$175.9(2)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 5$	$95.31(9)$	$\mathrm{N} 9-\mathrm{C} 14-\mathrm{Fe}$	$176.3(2)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 5$	$174.37(9)$	$\mathrm{N} 10-\mathrm{C} 15-\mathrm{Fe}$	$177.0(3)$
$\mathrm{N} 8-\mathrm{Fe}-\mathrm{C} 13$	$177.34(11)$	$\mathrm{N} 11-\mathrm{C} 16-\mathrm{Fe}$	$176.7(3)$
$\mathrm{C} 17-\mathrm{Fe}-\mathrm{C} 16$	$168.68(12)$	$\mathrm{N} 12-\mathrm{C} 17-\mathrm{Fe}$	$176.7(3)$
$\mathrm{C} 15-\mathrm{Fe}-\mathrm{C} 14$	$172.16(12)$		$178.5(3)$
Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z ;\left(\right.$ (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.			

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.91	2.20	$2.958(5)$	141
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~N} 11^{\mathrm{i}}$	0.91	2.25	$3.103(3)$	156
$\mathrm{~N} 5-\mathrm{H} 5 \cdots \mathrm{~N} 12^{\mathrm{ii}}$	0.91	2.38	$3.139(3)$	141
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{~N} 10^{\text {iii }}$	0.82	2.03	$2.836(4)$	170
$\mathrm{O} 2-\mathrm{H} 12 \cdots \mathrm{~N} 10$	0.82	2.44	$3.202(4)$	155
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.97	2.51	$3.370(5)$	148
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 1^{\mathrm{iv}}$	0.97	2.44	$3.376(4)$	162
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{~N} 12^{\mathrm{iv}}$	0.97	2.62	$3.517(4)$	155
Symmetry codes:	(i)	$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z ;$	(ii) $)$	$1-x,-y, 1-z ;$ (iii) $x, y, 1+z ;$ (iv)
$\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.				

metal-organic compounds

The H atoms were located geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \mathrm{~A}, \mathrm{~N}-\mathrm{H}$ distances of $0.91 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent). There is some disorder of the terminal $\mathrm{O} 1-\mathrm{H} 11$ and $\mathrm{O} 2-\mathrm{H} 12$ hydroxy groups, the disorder being over two orientations in each case. This was allowed for by appropriate occupancy refinement and resulted in occupancies of 0.724 (5)/0.276 (5) and $0.636(4) /$ 0.364 (4) for the $\mathrm{O} 1 / \mathrm{O}^{\prime}$ and $\mathrm{O} 2 / \mathrm{O}^{\prime}$ sites, respectively.

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors express their gratitude to the Zhejiang Provincial Science Foundation of China for financial support through project No. M203077.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1736). Services for accessing these data are described at the back of the journal.

References

Alcock, N. W., Samatus, A. \& Szklarzevicz, J. (1993). J. Chem. Soc. Dalton Trans. pp. 885-889.
Clemente-Leon, M., Coronado, E., Galan-Mascaros, J. R., Gomex-Garcia, C. J., Woike, Th. \& Clemente-Juan, J. M. (2001). Inorg. Chem. 40, 87-94.
Entley, W. R. \& Giroloni, G. S. (1994). Inorg. Chem. 33, 5165-5168.
Kou, H. Z., Bu, W. M., Gao, S., Liao, D. Z., Jiang, Z. H., Yan, S. P., Fan, Y. G. \& Wang, G. L. (2000). J. Chem. Soc. Dalton Trans. pp. 2996-3000.
Lu, T. B., Xiang, H., Li, X. Y., Su, C. Y., Mao, Z. W. \& Ji, L. N. (2000). Chem. J. Chin. Univ. 21, 187-189.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Olabe, J. A., Gentil, L. A., Rigotti, G. \& Navaza, A. (1984). Inorg. Chem. 23, 4297-4302.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shen, L. (2002). Acta Cryst. C58, m588-m590.
Shen, L., Zhang, Y. J., Sheng, G. D. \& Wang, W. T. (2002). Acta Cryst. C58, m382-m384.
Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhan, S. Z., Chen, X. Y., Vij, A., Guo, D. \& Meng, Q. (1999). Inorg. Chim. Acta, 292, 157-162.

